[KALKULUS ] TURUNAN FUNGSI ALJABAR DENGAN LIMIT FUNGSI



Turunan: Pengertian, Macam, Rumus, & Contoh Soal


Pembahasan mengenai turunan perlu untuk dipelajari. Dengan menggunakan konsep limit yang telah kalian pelajari, kalian akan dengan mudah mempelajari materi turunan berikut.
Turunan merupakan salah satu materi lanjutan dari limit.
Masih ingatkah kalian dengan materi limit? Konsep mengenai limit akan kita gunakan sebagai dasar dalam mempelajari materi ini.
Langsung saja, kita mulai dengan definisi turunan.

Definisi Turunan

Turunan merupakan suatu perhitungan terhadap perubahan nilai fungsi karena perubahan nilai input (variabel).
Turunan dapat disebut juga sebagai diferensial dan proses dalam menentukan turunan suatu fungsi disebut sebagai diferensiasi.
Menggunakan konsep limit yang sudah dipelajari, turunan dapat didefinisikan sebagai


Rumus Turunan
turunan tersebut didefinisikan sebagai limit dari perubahan rata-rata dari nilai fungsi terhadap variabel x.
Selanjutnya akan dijelaskan mengenai contoh penerapan turunan.

Penerapan Turunan

Berikut merupakan beberapa penerapan turunan.
  • Turunan dapat diterapkan untuk menghitung gradien dari garis singgung suatu kurva.
  • Turunan dapat digunakan untuk menentukan interval dimana suatu fungsi naik atau turun.
  • Turunan dapat diterapkan untuk menentukan nilai stasioner suatu fungsi.
  • Turunan dapat diterapkan dalam menyelesaikan permasalahan yang berkaitan dengan persamaaan gerak.
  • Turunan dapat digunakan untuk menyelesaikan permasalahan maksimum-minimum.
Berikut ini akan dijelaskan mengena rumus turunan.

Rumus Turunan

Berikut merupakan beberapa rumus dasar untuk menentukan turunan.
  • f(x) = c, dengan c merupakan konstanta
Turunan dari fungsi tersebut adalah f’(x) = 0.
  • f(x) = x
Turunan dari fungsi tersebut adalah f’(x) = 1.
  • f(x) = axn
Turunan dari fungsi tersebut adalah f’(x) = anxn – 1
  • Penjumlahan fungsi:  h(x) = f(x) + g(x)
Turunan fungsi tersebut yaitu h’(x) = f’(x) + g’(x).
  • Pengurangan fungsi: h(x) = f(x) – g(x)
Turunan fungsi tersebut adalah h’(x) = f’(x) – g’(x)
  • Perkalian konstanta dengan suatu fungsi (kf)(x).
Turunan fungsi tersebut adalah k . f’(x).
Berikut ini akan dijelaskan mengenai turunan fungsi.

Rumus-rumus Turunan Fungsi Aljabar

Dengan definisi turunan akan dicari rumus-rumus turunan fungsi aljabar yang terdiri dari fungsi pangkat f(x) = x^n, hasil kali fungsi f(x) = u(x) . v(x), hasil pembagian fungsi  f(x) = \frac{u(x)}{v(x)}, dan pangkat dari fungsi f(x) = (u(x))^n.

1. Rumus turunan fungsi pangkat f(x) = x^n

Fungsi berbentuk pangkat turunannya dapat menggunakan rumus f'(x) = \lim \limits_{h \to 0}\frac{f(x+h)-f(x)}{h} sebagai:
f'(x) = \lim \limits_{h \to 0}\frac{(x+h)^n - (x)^n}{h}

= \lim \limits_{h \to 0}\frac{\sum^n_{i=0}C^n_ix^{n-i}h^i-x^n}{h}

= \lim_{h \to 0}\frac{C^n_0x^n+C^n_1x^{n-1}h+C^n_2x^{n-2}h^2+\cdots+C^n_nh^n-x^n}{h}

= \lim \limits_{h\to0}\frac{x^n+nx^{n-1}h+\frac{n(n-1)}{2!}x^{n-2}h^2+\cdots+h^n-x^n}{h}

= \lim \limits_{h\to0}\frac{nx^{n-1}h+\frac{n(n-1)}{2!}x^{n-2}h^2+\cdots+h^n}{h}

= \lim \limits_{h\to0}(nx^{n-1}+\frac{n(n-1)}{2!}x^{n-2}h+\cdots+h^{n-1})

= nx^{n-1}+0+0+\cdots+0=nx^{n-1}

Jadi rumus turunan fungsi pangkat adalah:
f'(x ) = nx^{n-1}

2. Rumus turunan hasil kali fungsi f(x) = u(x) \cdot v(x)

Fungsi f(x) yang terbentuk dari perkalian fungsi u(x) dan v(x), turunannya didapat dengan:
f'(x) = \lim \limits_{h\to0}\frac{f(x+h)-f(x)}{h}
\lim \limits_{h\to0}=\frac{u(x+h)v(x+h)-u(x)v(x)}{h}
\lim \limits_{h\to0}=\frac{u(x+h)v(x+h)-u(x+h)v(x)+u(x+h)v(x)-u(x)v(x)}{h}
=\lim\limits_{h\to0}\frac{[u(x+h)v(x+h)-u(x+h)v(x)]+[u(x+h)v(x)-u(x)v(x)]}{h}
= \lim \limits_{h\to0}\frac{u(x+h)[v(x+h)-v(x)]}{h}+\lim \limits_{h\to0}\frac{[u(x+h)-u(x)]v(x)}{h}
= \lim \limits_{h\to0}u(x+h) \cdot \lim \limits_{h\to0}\frac{v(x+h)-v(x)}{h}+\lim \limits_{h\to0}\frac{u(x+h)-u(x)}{h}.\lim_{h\to0}v(x)
= u(x+0) \cdot v'(x)+u'(x) \cdot v(x)
u'(x).v(x)+u(x).v'(x)\overset{atau}{\rightarrow}u'.v+u.v'
Jadi rumus turunan fungsinya adalah:
f'(x)=u'v+uv'

3. Rumus turunan fungsi pembagian f(x)=\frac{u(x)}{v(x)}

f'(x) = \lim \limits_{h\to0}\frac{f(x+h)-f(x)}{h}\overset{menjadi}{\rightarrow}\lim \limits_{h\to0}\frac{\frac{u(x+h)}{v(x+h)} - \frac{u(x)}{v(x)}}{h}
sehingga
f'(x) = \lim \limits_{h\to0}\frac{u(x+h)v(x)-u(x)v(x+h)}{h \cdot v(x+h)v(x)}
=\lim \limits_{h\to0}\frac{u(x+h)v(x)-u(x)v(x)-u(x)v(x+h)+u(x)v(x)}{h.v(x+h)v(x)}
= \lim \limits_{h\to0}\frac{[u(x+h)-u(x)]v(x)-u(x)[v(x+h)-v(x)]}{h.v(x+h)v(x)}
= \lim \limits_{h\to0}\frac{[u(x+h)-u(x)]v(x)}{h \cdot v(x+h)v(x)} - \lim \limits_{h\to0}\frac{u(x)[v(x+h)-v(x)]}{h \cdot v(x+h)v(x)}
=\lim \limits_{h\to0}\frac{u(x+h)-u(x)}{h}.\lim\limits_{h\to0}\frac{v(x)}{v(x+h)v(x)}- \lim\limits_{h\to0}\frac{u(x)}{v(x+h)v(x)}.\lim\limits_{h\to0}\frac{v(x+h)-v(x)}{h}
= u'(x).\frac{v(x)}{v(x+0)v(x)}-\frac{u(x)}{v(x+0)v(x)} \cdot v'(x)
=\frac{u'(x)v(x)}{v(x)v(x)}-\frac{u(x)v'(x)}{v(x)v(x)} \rightarrow\frac{u'(x)v(x)-u(x)v'(x)}{(u(x))^2} \rightarrow \frac{u'v-uv'}{v^2}
Jadi rumus turunan fungsinya adalah
f'(x) = \frac{u'v-uv'}{v^2}

4. Rumus turunan pangkat dari fungsi f(x)=(u(x))^n

Ingat jika f(x) = x^n, maka:
f'(x)=\frac{df(x)}{dx}= \frac{dx^n}{dx} = nx^n-1
Karena f(x) = (u(x))^n=u^n, maka:
f'(x) = \frac{df(x)}{dx} = \frac{du^n}{dx} \cdot \frac{du}{du}
Atau
f'(x) = \frac{du^n}{du} \cdot \frac{du}{dx} = nu^{n-1} \cdot u'
Jadi rumus turunan fungsinya adalah:
f'(x) = nu^(n-1) \cdot u'

Rumus-rumus Turunan Trigonometri

Dengan menggunakan definisi turunan, dapat diperoleh rumus-rumus turunan trigonometri berikut: (dengan u dan v masing-masing fungsi dari x)
  1. y = \sin x \rightarrow y' = \cos x
  2. y = \cos x \rightarrow y' = - \sin x
  3. y = \tan x \rightarrow y' = \sec^2 x
  4. y = \cot x \rightarrow y' = - \csc^2 x
  5. y = \sec x \rightarrow y'
  6. y = \csc x \rightarrow - \csc \times \cot x
  7. y = \sin^n x y' = n \sin^{n-1} \times \cos x
  8. y = \cos^nx \rightarrow y' = -n \cos^{n-1} \times \sin x
  9. y = \sin u \rightarrow y' = u' \cos u
  10. y = \cos u \rightarrow y' = - u' \sin u
  11. y = \tan u \rightarrow y' = u' \sec^2 u
  12. y = \cot u \rightarrow y' =-u' \csc^2u
  13. y = \sec u \rightarrow y' = u' \sec u \tan u
  14. y = \csc u \rightarrow y' = -u' \csc u \cot u
  15. y = \sin^nu \rightarrow y' = n.u' \sin^{n-1} \cos u
  16. y = \cos ^nu \rightarrow y'= -n \cdot u' cos^{n-1}u \cdot \sin u

Turunan Fungsi

Misalkan terdapat suatu fungsi f(x) = axn. Turunan dari fungsi tersebut yaitu f’(x) = anxn – 1.
Contohnya yaitu:
f(x) = 3x3
turunan dari fungsi tersebut yaitu
f’(x) = 3 (3) x3 – 1 = 9 x2.
Contoh lainnya misalnya g(x) = -5y-3.
Turunan dari fungsi tersebut adalah g’(y) = -5 (-3) y-3 – 1  = 15y-4.
Berikut akan dijelaskan turunan fungsi aljabar.

Turunan Fungsi Aljabar

Pembahasan turunan fungsi aljabar pada bagian ini meliputi turunan dalam bentuk perkalian dan turunan dalam pembagian fungsi aljabar.
Turunan fungsi aljabar dalam bentuk perkalian yaitu sebagai berikut.
Misalkan terdapat perkalian fungsi: h(x) = u(x) . v(x).
Turunan dari fungsi tersebut yaitu h’(x) = u’(x) . v(x) + u(x) . v’(x).
Keterangan:
  • h(x) : fungsi dalam bentuk perkalian fungsi.
  • h’(x) : turunan fungsi bentuk perkalian
  • u(x), v(x) : fungsi dengan variabel x
  • u’(x), v’(x) : turunan fungsi dengan variabel x
Turunan fungsi aljabar dalam bentuk pembagian yaitu:
Misalkan terdapat perkalian fungsi: h(x) = u(x)/v(x). Turunan dari fungsi tersebut adalah
h’(x) = (u’(x) . v(x) – u(x) . v’(x))/v2(x).
Keterangan:
  • h(x) : fungsi dalam bentuk perkalian fungsi.
  • h’(x) : turunan fungsi bentuk perkalian
  • u(x), v(x) : fungsi dengan variabel x
  • u’(x), v’(x) : turunan fungsi dengan variabel x
\

Contoh Soal Turunan Fungsi dan Pembahasan

Contoh Soal 1 – Turunan Fungsi Aljabar

Turunan pertama dari f(x) = 4 \sqrt{2x^3 - 1} adalah
Pembahasan 1:
Soal ini merupakan fungsi yang berbentuk y = au^n yang dapat diselesaikan dengan menggunakan rumus y' = n \cdot a \cdot u^{n-1} \cdot u'. Maka:
f(x) = 4 \sqrt{2x^3-1} = 4(2x^3-1)^{\frac{1}{2}}
Sehingga turunannya:
f'(x) = \frac{1}{2} \cdot 4(2x^3-1)^{-\frac{1}{2}} \cdot 6x^2
=2(2x^3-1) \cdot 6x^2
= 12x^2(2x^3-1)^{-\frac{1}{2}}
= \frac{12x^2}{(2x^3-1)^{\frac{1}{2}}}
=\frac{12^2}{\sqrt{2x^3-1}}

Contoh Soal 2 – Turunan Fungsi Trigonometri

Tentukan turunan pertama dari
f(x) = \frac{6}{\sqrt[3]{\sin (3x-\frac{\pi}{5})}}
Pembahasan 2:
Untuk menyelesaikan soal ini menggunakan rumus campuran yaitu  f'(x) = \frac{u'v-uv'}{v^2} dan juga  y' = n \cdot u' \sin^{n-1}u \cdot \cos u . Sehingga:
f(x) = \frac{6}{\sqrt[3]{sin(3x-\frac{\pi}{5})}}
f(x) = \frac{6}{(sin(3x-\frac{\pi}{5}))^{\frac{1}{2}}}
f'(x) = \frac{0 - 6 \cdot 3 \cdot \frac{1}{3}(\sin (3x - \frac{\pi}{5}))^{- \frac{2}{3}} \cdot \cos (3x - \frac{\pi}{5})}{(\sin (3x - \frac{\pi}{5}))^\frac{2}{3}}
f'(x) = \frac{-6(sin(3x-\frac{\pi}{5}))^{-\frac{2}{3}}.cos(3x-\frac{\pi}{5})}{(sin(3x-\frac{\pi}{5}))^{\frac{2}{3}}}. \frac{(sin(3x-\frac{\pi}{5}))^{\frac{1}{3}}}{(sin(3x-\frac{\pi}{5}))^{-\frac{1}{3}}}
f'(x) = \frac{-6(sin(3x-\frac{\pi}{5}))^{-1} cos(3x-\frac{\pi}{5})}{\sqrt[3]{sin(3x-\frac{\pi}{5}})}
f'(x) = \frac{-6cot(3x-\frac{\pi}{5})}{\sqrt[3]{sin(3x-\frac{\pi}{5})}}

Contoh Soal 3 – Aplikasi Turunan

Tentukan nilai maksimum dari  f(x) = x^3 - 6x^2 + 9x pada interval -1 ≤ x ≤ 3.
Pembahasan 3:
Ingat syarat nilai fungsi f(x) maksimum adalah f'(x) = 0 dan  f"(x) < 0 maka:
  • f_{max} jika f'(x) = 0
3x^2 - 12x + 9 = 0
x^2 - 4x + 3 = 0
(x - 1)(x - 3) = 0
dan  x_1 = 1  dan x_2 = 3
f_{max} = f(1) = 1^3 - 6.1^2 + 9.1
f_{max} = 4

contoh 4
Tentukan turunan dari f(x) = 4x2 .
Penyelesaian:
Tentukan dahulu nilai f(x) dan f(x + h).
Oleh karena f(x) = 4x2 , maka:
f(x + h) = 4 (x + h)2 = 4 (x2 + 2xh + h2 ) = 4x2 + 8xh + 4h2 .
Dengan demikian, diperoleh:
Jadi, turunan dari f(x) = 4x2 adalah f '(x) = 8x.

contoh 5
Tentukan turunan dari f(x) = 3x - 2.
Penyelesaian:
Oleh karena f(x) = 3x - 2, maka:
f(x + h) = 3 (x + h) - 2 = 3x + 3h - 2
Dengan demikian, diperoleh:
Jadi, turunan dari f(x) = 3x - 2 adalah f '(x) = 3.

contoh 6


contoh 7

Komentar

Postingan populer dari blog ini

KALKULUS | BENTUK LIMIT TAK TENTU DENGAN ATURAN L'HOPITAL (PART 1)

Yuk Belajar!! Determinan Matriks, metode ekspansi laplace dan determinan metode ekspansi laplace

Matirks Metode OBE (operasi baris elementer)