yuk belajar!! Determinan Matriks : Metode Chio

DETERMINAN : METODE CHIO



Hai zulfirian, bagaimana kabarnya? Semoga selalu sehat dan tetap semangat belajar, ya!

 Tidak terasa kita sudah masuk lebih dalam matriks ya. sebelumnya kita sudah membahas matriks secrav pengertian, macam-macamnya. lalu, kita sudah membahas determinan matriks dan juga determinan matriks metode eskpansi laplace. Pada artikel kali ini, zulfier Blog akan mengajak zulfirian untuk belajar tentang determina matriks metode chio. Yuk, simak!
 
Determinan merupakan suatu fungsi dari himpunan semua matriks persegi ke himpunan semua bilangan real. Determinan matriks A biasanya dinyatakan oleh |A| atau det(A). Terdapat beberapa metode yang digunakan untuk menentukan determinan matriks yaitu metode Sarrus, Ekspansi Kofaktor, dan Kondensasi (Penyusutan) CHIO. Kondensasi CHIO merupakan salah satu metode yang dapat digunakan dalam menentukan determinan matriks yang memiliki ordo n \times n dengan n \geq 3.
Kondensasi CHIO menyusutkan determinan matriks ordo n \times n menjadi ordo (n-1) \times (n-1) dan dikalikan dengan elemen a_{11}. Proses kondensasi ini berakhir pada determinan matriks ordo 2 \times 2.
Tanpa mengurangi perumuman, dalam tulisan ini menggunakan matriks persegi dengan syarat elemen a_{11} \neq 0. Apabila nilai elemen a_{11} = 0 maka dilakukan proses operasi baris/kolom yaitu menukarkan baris/kolom pada determinan matriks untuk memperoleh a_{11} \neq 0.
Perhatikan untuk matrik dengan ordo 3 \times 3. Persamaan yang digunakan untuk metode CHIO ini sebagai berikut.

det(A) = \dfrac{1}{(a_{11})^{3-2}} \begin{vmatrix} \begin{vmatrix} a_{11} &  a_{12}\\ a_{21} & a_{22} \end{vmatrix} & \begin{vmatrix} a_{11} &  a_{13}\\ a_{21} & a_{23} \end{vmatrix}\\ &\\ \begin{vmatrix} a_{11}  & a_{12}\\ a_{31} & a_{32} \end{vmatrix} & \begin{vmatrix} a_{11}  & a_{13}\\ a_{31} & a_{33} \end{vmatrix} \end{vmatrix}

Selanjutnya untuk matrik dengan ordo 4 \times 4. Persamaan yang digunakan untuk metode CHIO ini sebagai berikut.

det(A) = \dfrac{1}{(a_{11})^{4-2}} \begin{vmatrix} \begin{vmatrix} a_{11} &  a_{12}\\ a_{21} & a_{22} \end{vmatrix} & \begin{vmatrix} a_{11} &  a_{13}\\ a_{21} & a_{23} \end{vmatrix} & \begin{vmatrix}  a_{11} & a_{14}\\ a_{21} & a_{24} \end{vmatrix}\\ &&\\  \begin{vmatrix} a_{11} & a_{12}\\ a_{31} & a_{32} \end{vmatrix} &  \begin{vmatrix} a_{11} & a_{13}\\ a_{31} & a_{33} \end{vmatrix} &  \begin{vmatrix} a_{11} & a_{14}\\ a_{31} & a_{34}  \end{vmatrix}\\ &&\\ \begin{vmatrix} a_{11} & a_{12}\\ a_{41} &  a_{42} \end{vmatrix} & \begin{vmatrix} a_{11} & a_{13}\\ a_{41} &  a_{43} \end{vmatrix} & \begin{vmatrix} a_{11} & a_{14}\\  a_{41} & a_{44} \end{vmatrix}\\ \end{vmatrix}

Apabila ukuran matriksnya diperluas atau diperumum menjadi n \times n, maka diperoleh persamaan untuk metode CHIO adalah sebagai berikut.

det(A) = \dfrac{1}{(a_{11})^{n-2}} \begin{vmatrix} \begin{vmatrix} a_{11} &  a_{12}\\ a_{21} & a_{22} \end{vmatrix} & \begin{vmatrix} a_{11} &  a_{13}\\ a_{21} & a_{23} \end{vmatrix} & \ldots & \begin{vmatrix}  a_{11} & a_{1n}\\ a_{21} & a_{2n} \end{vmatrix}\\ &&&\\  \begin{vmatrix} a_{11} & a_{12}\\ a_{31} & a_{32} \end{vmatrix} &  \begin{vmatrix} a_{11} & a_{13}\\ a_{31} & a_{33} \end{vmatrix} &  \ldots & \begin{vmatrix} a_{11} & a_{1n}\\ a_{31} & a_{3n}  \end{vmatrix}\\ &&&\\ \vdots & \vdots & \ddots &  \vdots\\ \begin{vmatrix} a_{11} & a_{12}\\ a_{n1} & a_{n2}  \end{vmatrix} & \begin{vmatrix} a_{11} & a_{13}\\ a_{n1} & a_{n3}  \end{vmatrix} & \ldots & \begin{vmatrix} a_{11} & a_{1n}\\ a_{n1}  & a_{nn} \end{vmatrix}\\ \end{vmatrix}
Begitu pengerrtian nya dan cara kerja nya teman-temna, biar lebih mudah dan lebih paham kita masuk pada pembahasan contohnya ya, berikut adalah contohnya:
 
Contoh 1.
Hitung determinan matriks A = \begin{bmatrix} -2&1&4\\ 3&-5&2\\ 5&2&1 \end{bmatrix}.
 Dengan menggunakan metode CHIO, maka didapat

det(A) = \dfrac{1}{(-2)^{3-2}} \begin{vmatrix} \begin{vmatrix} -2&1\\ 3&-5  \end{vmatrix} & \begin{vmatrix} -2&4\\ 3&2 \end{vmatrix}\\ &\\  \begin{vmatrix} -2&1\\ 5&2 \end{vmatrix} & \begin{vmatrix} -2&4\\  5&1 \end{vmatrix} \end{vmatrix}
= \dfrac{1}{-2} \begin{vmatrix} (-5)(-2)-(3)(1) & (-2)(2)-(3)(4)\\ (-2)(2)-(1)(5) & (-2)(1)-(4)(5) \end{vmatrix}
= \dfrac{1}{-2} \begin{vmatrix} 7&-16\\ -9&-22 \end{vmatrix}
= \dfrac{1}{-2} (7 \cdot -22-(-16) \cdot -9)
= \dfrac{1}{-2} (-154-144)
= \dfrac{1}{-2} (-298)
= -149

Contoh 2.
Hitung determinan matriks B = \begin{bmatrix} 2&1&6&7\\ 3&2&4&5\\ 4&4&2&3\\ 5&6&1&4 \end{bmatrix}.
Dengan menggunakan metode CHIO, maka didapat

det(B) = \dfrac{1}{(2)^{4-2}} \begin{vmatrix} \begin{vmatrix} 2&1\\ 3&2  \end{vmatrix} & \begin{vmatrix} 2&6\\ 3&4 \end{vmatrix} &  \begin{vmatrix} 2&7\\ 3&5 \end{vmatrix}\\ &&\\ \begin{vmatrix} 2&1\\  4&4 \end{vmatrix} & \begin{vmatrix} 2&6\\ 4&2 \end{vmatrix} &  \begin{vmatrix} 2&7\\ 4&3 \end{vmatrix}\\ &&\\ \begin{vmatrix} 2&1\\  5&6 \end{vmatrix} & \begin{vmatrix} 2&6\\ 5&1 \end{vmatrix} &  \begin{vmatrix} 2&7\\ 5&4 \end{vmatrix} \end{vmatrix}
= \dfrac{1}{2^2} \begin{vmatrix} (2)(2)-(3)(1) & (2)(4)-(3)(6) & (2)(5)-(3)(7)\\ (2)(4)-(1)(4) & (2)(2)-(4)(6) & (2)(3)-(7)(4)\\ (2)(6)-(1)(5) & (2)(1)-(6)(5) & (2)(4)-(7)(5) \end{vmatrix}
= \dfrac{1}{4} \begin{vmatrix} 1&-10&-11 \\ 4&-20&-22\\ 7&-28&-27  \end{vmatrix}
Misal C = \begin{vmatrix} 1&-10&-11 \\ 4&-20&-22\\ 7&-28&-27 \end{vmatrix}
diperoleh
det(C) = \dfrac{1}{1^{3-2}} \begin{vmatrix} \begin{vmatrix} 1&-10\\ 4&-20  \end{vmatrix} & \begin{vmatrix} 1&-11\\ 4&-22 \end{vmatrix}\\  &\\ \begin{vmatrix} 1&-10\\ 7&-28 \end{vmatrix} &  \begin{vmatrix} 1&-11\\ 7&-27 \end{vmatrix} \end{vmatrix}
= \dfrac{1}{1} \begin{vmatrix} (1)(-20)-(4)(-10) & (1)(-22)-(-11)(4)\\ (1)(-28)-(-10)(7)  & (1)(-27)-(-11)(7) \end{vmatrix}
= \begin{vmatrix} 20 & 22\\ 42 & 50 \end{vmatrix}
= (20 \cdot 50-22 \cdot 42
= 1000-924
= 76

Jadi,
det(B) = \dfrac{1}{4} det(C)
= \dfrac{1}{4} (76)
= 19
sekian pembahasan dari Determinan Matriks dengan Metode Chio, sekiranya ada yg ingin ditanyakan silahkan tulis komentar dibawah ini ya..salam pemuda berkarya!!salam zulfarian!!

Komentar

Postingan populer dari blog ini

KALKULUS | BENTUK LIMIT TAK TENTU DENGAN ATURAN L'HOPITAL (PART 1)

Yuk Belajar!! Determinan Matriks, metode ekspansi laplace dan determinan metode ekspansi laplace

Matirks Metode OBE (operasi baris elementer)